MODC2 Procedures for Assembly of MODCOMP-II
Programs Using the Sigma 5 Assembler

J. W. Layland

Communications Systems Research Section

This article describes a set of programs which have been written to enable the
METASYMBOL assembler of the Sigma 5 to assemble programs for an attached
MODCOMP-I1 minicomputer. This program set is a follow-on to previously devel-
oped program sets which facilitated assemblies for the PDP-11 and SDS-930.

l. Introduction

The METASYMBOL. assembler for the Sigma 5 is a
very powerful macro-assembler which we have used in
the past to build programs for the SDS 920/930s or for
the PDP-11 minicomputer (Ref. 1). The flexibility of this
assembler has more recently been used to build programs
for the MODCOMP-IIL. In this way, the more powerful
and familiar features of the Sigma assembler are made
available for minicomputer software development without
requiring a user to become familiar with the total soft-
ware system of the minicomputer, which he may not need
for his application. One potential pitfall here is that soft-
ware developed with the Sigma host assembler cannot be
readily maintained on.the MODCOMP, or vice versa, due
to lexical differences of the two assemblers. This potential
problem is not deemed serious for our application, which
will use MODCOMP without peripherals, which is to be
direct-link connected to the Sigma 5.

JPL. DEEP SPACE NETWORK PROGRESS REPORT 42-34

The assembly package for the MODCOMP consists of
two parts: a system procedure deck “MODC2,” which
allows METASYMBOL to assemble a source language
similar to the MODCOMP’s native assembler, and a
secondary loader which reformats the Sigma 5 core-image
load module into proper binary format for loading into
the target minicomputer and punches it onto paper tape

or cards. Figure 1 describes the operation flow for use of
MODC2.

The procedure deck defines the valid operators to the
Sigma 5 METASYMBOL assembler and determines
what code will be generated for the valid source state-
ments. METASYMBOL procedures are similar to macro
definitions. The code produced from the source program
under control of the procedures is formatted by META-
SYMBOL into a Sigma relocatable object module (ROM)
containing relocation information, external references and
definitions, and generated code.

47



A number of read-only memories (ROMs) may then be
linked together, and the external references and defini-
tions resolved by the Sigma loader. Normally the loader
gives the user the option of saving relocation information,
creating a task-control block (TCB), and satisfying un-
resolved external references from the system library.
These are SIGMA-oriented functions and should be dis-
allowed during loading for MODCOMP-IT programs by
specifying the options (ABS), (NOTCB), and (NOSYSLIB)
on the load control card. The Sigma loader also has the
capability of relocating the program to any boundary
which is a multiple of 800 (hex) bytes. Tt will automatically
relocate to the background lower limit unless the BIAS
option is specified on the load card; (BIAS, 0) will cause
the first ROM to be not relocated. The Sigma loader
structures its output into a file called a load module
(LMN), which consists of the core image program and
several records of control information. The Sigma 5 has
write protection, so the core image is in several pieces,
one for each protection type.

At present, we are using the secondary loader “SLOAD:
DSN” developed for the PDP-11 (Ref. 1) to format and
punch the developed program into portable form. The
secondary loader reads a Sigma load module and writes
the 00 protection-type core image data in the format
which is loaded by the PDP-11 absolute loader. So that
the program need not start on a multiple of 800 hex, the
secondary loader skips all data until the first nonzero
16-bit word. Thus the first valid word in the MODCOMP
program must be nonzero. A special one-card bootstrap
loader has been written for the MODCOMP which ac-
cepts programs in the PDP-11 absolute binary format from
the twin-coax intercomputer communication links (Ref. 2).

Il. MODC2 Language Definitions

The source language is defined by the lexical analyzer
and directives of the METASYMBOL assembler and by
the procedure definitions of SYSTEM MODC2. The
METASYMBOL reference manual (Ref. 3) contains a
complete description of the structure imposed upon char-
acter strings, symbols, expressions, and statements that
are to be processed by this assembler, and also describes
the data definition facilities and conditional assembly
features of this assembler.

Character strings in the Sigma 5 are intrinsically
EBCDIC, while strings are represented internally as
ASCII in the MODCOMP-II. Thus, the Sigma’s text-string
generating directives, while available to the MODCOMP

48

programmer, are relatively useless. A procedure “ANSCI”
is provided which can convert short strings of one to four
characters into ASCII character codes for use on the
MODCOMP. An example of its use is given later.

Symbols may consist of 1-63 alphameric characters,
not containing embedded blanks, All characters in a sym-
bol are significant. An extended alphabetic character set
includes the characters $, @, #, :, and ___ (underscore).
The special symbols $, and $$ represent the values of the
location counters and must be given an intrinsic two-byte
resolution by the directive

ORG2 x’sss’

which both establishes address resolution, and sets the
starting address of the program to the hexadecimal value
sss’.

Statements consist typically of four fields known as
Label, Command, Address, and Comment. Statements are
free-form, and each field is terminated by a blank, or
end-of-line, although semirigid field definition is to be
preferred for readability. The Label field is optional, and
may be eliminated by beginning any statement with a
blank. A statement is a comment-only if it begins with an
asterisk. The Label, Command, or Address fields may
consist of one or more subfields separated by commas.
The first subfield of the command field must invoke a
directive, a procedure from SYSTEM MODC2, or a user-
defined procedure. Any subfield within the address field
may be preceded by an asterisk. This feature is used
within SYSTEM MODC2 to invoke indirect addressing
where appropriate. Multiple label subfields are allowed,
and may be used in a user-defined procedure to label
different lines within a procedure which generates multi-

ple code lines, although there is no use of this feature
within SYSTEM MODC2.

The MODCOMP-II instruction set as described in the
Computer Reference Manual (Ref. 4) is available, with
the exception of the floating point arithmetic set. These
can be added at a later date, along with procedures to
define floating constants in the MODCOMP format. The
instructions are grouped into eight distinct classes, dis-
tinguished by the instruction addressing mode, and the
format of the executable instruction in memory.

Class 1 is the immediate mode instructions which have
the format

CMD,R1 value

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34



The instruction ‘LDI is an example from this class which,
when executed, will place “value” into register R1. Value
may be a number, a symbol, or an expression which is
evaluated by the METASYMBOL assembler.

Class 2 is the register-to-register mode instructions
which have the format

CMD,R1 R2

The instruction ‘LDX’ is an example from this class, which
when executed, will place the contents of the memory cell
whose address is in register R2 into register R1. This class
also contains the bit-manipulating instructions and the
register I-O instructions.

Class 3 is the memory-to-register instructions which
have the format

CMD,R1 [*1LOCATION[,XR]

Brackets denote that their contents are optional. The
asterisk, if present, invokes indirect addressing, and the
“XR”, if present, invokes indexing by the contents of
register XR. The instruction ‘LDM’ is an example from
this class which, when executed, will place the value con-
tained in the memory cell addressed by the instruction
into the register R1. Determination of the effective address
of instructions under the optional indexing and/or indirect
addressing is specified in the Computer Reference Manual
(Ref. 4).

Class 4 is the register-to-register test instructions with
conditional branching. They have the format

CMD,R1 R2,B-LOC

These instructions execute as their class 2 counterparts
except that a branch to B-LOC is performed if the instruc-
tion’s test conditions are satisfied.

Class 5 is the memory-to-register test instructions with
conditional branching. They have the format

CMD,R1 [*1LOC[,XR],B-LOC

These instructions execute as their class 3 counterparts
except that a branch to B-LOC is performed if the test
conditions are satisfied.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

Class 6 is the register-to-register comparison instruc-
tions which have the format
CMD,R1 R2,B-LOC1,B-L.OC2
Class 7 is the register-to-memory comparison instruc-
tions which have the format
CMD,R1 [*1LOC[,XR],B-LOCI1,B-LOC2
The address structure of class 6 and 7 corresponds to that

of class 2 and 3, respectively, with the addition of the
conditional branch location words.

Class 8 is a varied collection of two-byte instructions
with the format

CMD value
where “value” may be missing for some specific instruc-
tions.

A summary of MODCOMP-II instructions may be
found in Appendix E of the Computer Reference Manual
(Ref. 4).

Itl. The Secondary Loader

The secondary loader reformats Sigma 5 load modules
into the format required by the minicomputer’s absolute
binary loader. Input to the secondary loader is through
the M:EI DCB; output is through the M:PO DCB. The
input load module must be on a disk file, and output is
typically to paper tape, or to cards. The M:EI and M:PO
DCBs must be assigned to the appropriate files or devices
before execution of the secondary loader. The control
information expected by the absolute loader at the begin-
ning and end of each physical record is supplied by the
secondary loader.

The present secondary loader was initially written for
the PDP-11. Data punched by this loader are organized
into 16-bit (two-byte) words, with the least significant
byte first. The following three control words precede the
data to be loaded: a word containing the value ‘01", a
word containing the total byte count in the physical
record, and a word containing the starting location for
loading the data from the record. As noted above, a
special bootstrap loader has been written to load data in
this format into the MODCOMP memory from an inter-
computer communications link. Should the need arise, a
secondary loader which punches data compatible with
the MODCOMP-11 loaders could be developed.

49



The length of a core-image segment in a Sigma load
module is a multiple of a Sigma double word (64 bits), so
the last byte of a program created through MODC2 will
load on a MODCOMP-II byte address which is 1 less
than a multiple of 8. This means that several bytes of
zeros may follow the actual program.

IV. Assembly Example

Figure 2 is an example of a job-step sequence for the
assembly of a simple nonsense program for the
MODCOMP-II. At least one instruction from each class is
included to illustrate the addressing and listing structure
which results. A listing line consists of the input source-
line number, the (4-byte) word address at which the
instruction begins, and (if nonzero) a byte-offset from that
word boundary. This is followed by a hexadecimal copy
of the generated instruction and a copy of the input source
line. Some source lines may result in more than one line

of listing to accommodate the generated instruction(s), as
for example, lines 16 or 37. The eight instruction classes
are each indicated by a “*n” comment line preceding the
appearance of that instruction class, as on line 9, which
precedes the class 3 instruction LDM. Data are defined
as 2-byte units by “DATA,2” as on line 38. Generation of
ASCII Text is illustrated on lines 41 and 42.

The job-control-language shown produces a paper tape
copy of the program. Cards would be produced if the
explicit ASSIGNment of M:PO were deleted, and the
default assignment used instead.

The SYSTEM MODC2 has been used successfully to
generate programs totalling many hundreds of lines of
code for the MODCOMP-II. These programs have been
loaded into the MODCOMP via the direct link and suc-
cessfully executed. While the SYSTEM MODC2 cannot
be guaranteed to be correct, it at present contains no
known problems.

References

L. Layland, J. W., Klimasauskas, C. C., and Ericksen, D. E., “An Introduction to

3 <

Minicomputer Software Support,

The X930 Program Set for Sigma 5 Assem-

bly,” and “The SAPDP Program Set for Sigma 5 Assembly,” The DSN Progress
Report, Technical Report 32-1526, Vol. VII, pp. 84-96, Jet Propulsion Labora-

tory, Pasadena, Calif., Feb. 15, 1972.

2. Lushbaugh, W. A., “A Driver/Receiver Unit for an Intercomputer Communica-
tions Link,” The DSN Progress Report, Technical Report 32-1526, Vol. XV, pp.
109-115, Jet Propulsion Laboratory, Pasadena, Calif., June 15, 1973.

3. “Xerox Data Systems Sigma 5-9 METASYMBOL Reference Manual,” Publica-
tion 90-09-52F, Xerox Data Systems, Sept. 1972.

4. “MODCOMP-II Computer Reference Manual,” 210-102000-000, Modular Com-

puter Systems, May 1974.

50

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34



MODC2
PROC DECK

\ REFERENCE FILE

Va

MODC2
SOURCE DECK

INPUT

/

ASSEMBLE USING

J

MODC2
PROGRAM
LIBRARY

REFERENCE FILE

METASYMBOL

OUTPUT

/

SIGMA OBJECT

MODULE

INPUT

LOAD USING
LOADER

‘ OUTPUT

SIGMA CORE-IMAGE
LOAD MODULE

INPUT

OUTPUT USING
SECONDARY
LOADER

QUTPUT

STANDARD
BINARY DECK

Fig. 1. Operational flowchart for the MODC2 program package

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34

51



14300 YyN 17,176 1p=0006#F00
} Jes Mepca,LYL
§ ASSTON MIBO, (FILE,TESTB)
!METASVH S1,L0,B8,AC(LYL)
HOV 143105 JUN 17, '76
1
2 01 000AQ
01 000A0
3
4
5
6 01 Q00AO gD200162
7
8 01 OQOAL FR32
9
10 O} QOOA1 2 ES#80162
:; 01 000A2 2 ESS530162
13 01 O00A3 2 7D6E5014A
14 0l OQOA4 2 0000
15
16 01 OOODAS C4400161
olsa
17 01 O00A6 2 C44200601
0152
18 0l OQUAS £7000150
19
20 01 0O0QA9 DF3201567
0160
21 01 OOOAA 2 E£7000160
22
23 0l QOQAB 2 87FBQléZ
01500160
24 01 VOQAD 2 E700016V
25
26 01 UOOAE 2 4600
27 01 QO0CAF 2601
28 01 OOUAF 2 0000
29 01 0QOBO
30 01 000BO
31 01 V00BO 0000
32
HOU 14108 JUN 17, '7s
33
34 00000001
35
36 01 QOOBO 2 0000
37 01 00081 000A
01 000B1 2 ole2
01 00082 0140
01 00082 2 0000
38 01 00083
33 01 QO0B3 00ct
01 Q00B3 2 o0O0C1
01 00084 00ct
01 U00B4 2 00C!
01 000BS [o]¢]o8 ]
01 00085 2 0QOC1
01 000UB6 ouct
01 Q0086 2 0QOC1
01 VOOB7? ouct
01 00087 2 o00C!
40
41 01 V0UBA 41
01 Q0OB8 1 42
01 VDOBB 2 &3
0l UOOB8 3 44
42 01 V0UB9 )
43
b4 01 000AU
CONTRBL SECTION SUMMARY!

> Z

z Z

>r 23> > PEr > > »ZZ»»>

>>>>r >

L2
BEGIN
.2

3

b

5
YJUMPl

*6
JUMP?

*7
EQUAL

*3
EQUL

THIS IS
B8RG,2
SYSTEM
DEF
LD1,2
LDXs3

LOMs &
LOM,B

TRRBs 6
HLT

ADMB, 4
ADMB, 4
BRU
CRXBy 3
BRU
CBMB, 158

8RY GREATER THAN

NOP
SlA 1
HLT

;'EESTENT SET START LBCATISN

BEa TN

TABLE SET REG#2 TO ADDRESSE TABLE

2 FIRST wORD B8F TABLE

#TABLE LBAD THE wBRD POINTED T§ BY TABLE(1)
TABLE.3 LBAD THE WBRD IN TABLE(TABLE(1))

B4 JUMPL CaPy REGHS TG REG#6s BRANLM IF NBNZER
VALUE, JUMP2 ADD (REGH4) TO® VALUE, BRANCH IF

BNEs 2, JUMPR ADD (REG#4) TU (REUNRZ)*HONE, BRANCH IF
EwUl

24EQUAL,LESS; THAN SHEBULD ALWAYS TEST EQUAL

GREATERITHAN
#TABLE,;3,EQUL,LESSITHAN

LESSITHAN EQU HA(s)
GREATERITHAN EQU HA({®)

*

PZE
BNE

VALUE
TABLE

HLT

CuM,16
EGU
PLE
DATA,2

pey 10

DATA,2

ANSCI, 4

ANSCIa1
DEF
END

01 QooB9 1 PT @

2
0 DEFINE PUT#ZERY COMMAND
1
10, TABLE,BEGIN,U
Clat TEN EBCOIC A'S

tABCD? AND SUME ANSCII TEXT

LA
TABLE
BEGIN

SIMULATE PARITY TRAP
AND HALT PRBCESSING

52

Fig. 2. Example assembly

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34



HOU 143056 JUN 17, '76 3
- SYMBBL VALUES

ANSHICII/ZLIST EQUAL/0L OUDAB EQU1/01 000AE GREATERITHMAN/QL 00080

11700000001 12700000001 /00000000 JUMPL/01 QQUAS
JUMP2/0L1 000A9 J1/00000029 LESS:THAN/OL ©0OOBO L/ IST
BNE/ 00000001 VALUE/O1 000BO

* EXTERNAL ODEFINITIONS
BEGIN/O1 000A0
N8 PRIMARY REFERENCES
N8 SECONDARY REFERENCES
N8 UNDEF INED SYMBBLS
ERRBR SEVERITY LEVEL: 0O
N8 ERROR LINES

TABLE/OL 0VLOBY

% & £ ¥

1 LBAD (BIAS,01,(NBSYSLIB), (NSTCB), (ABS), (MAP), (EF, (TESTB)), (LMN, TESTL)

¢ » ALLOCATION SUMMARY « #

PROTECTIEN LOCATION PAGES
DATA iog) 1
PROCEDURE (01) 200 )

UOgF AU 0 BgGIN

ULEF 81 O TABLE

CSEC 0

DATA

BA SIZE
200 PRBCEDURE

16 SIZE

! ASSIUN MIgl, (FILE,TESTL)

1 ASSION M1PB, (DEVICE,PPAOL)
!RUN LLMN, SLBAD) 10SN)

I

Fig. 2. (contd)

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-34



